Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comb Chem High Throughput Screen ; 26(1): 116-125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35578844

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) containing microRNA (miRNA) response elements (MREs) can be used as competitive endogenous RNAs (ceRNAs) to regulate gene expression. OBJECTIVE: The purpose of this study was to investigate the expression profile and role of mRNAs and lncRNAs in unilateral ureteral obstruction (UUO) model rats and to explore any associated competing endogenous (ceRNA) network. METHODS: Using the UUO model, the obstructed kidney was collected on the 15th day after surgery. RNA Seq analysis was performed on renal tissues of four UUO rats and four sham rats. Four mRNAs and four lncRNAs of differentially expressed genes were randomly selected for real-time quantitative PCR (RT qPCR) analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed, and bioinformatics was used to predict MREs. By screening for ceRNAs combined with target gene prediction, a related ceRNA network was constructed and verified by RT-qPCR. RESULTS: We identified 649 up-regulated lncRNAs, 518 down-regulated lncRNAs, 924 downregulated mRNAs and 2029 up-regulated mRNAs. We identified 30 pathways with the highest enrichment in GO and KEGG. According to the RNA Seq results and the expression of Nr4a1, the network was constructed based on Nr4a1 and included two MREs and ten lncRNAs. Furthermore, lncNONRATT011668.2/miR-361-3p/Nr4a1 was identified and verified according to ceRNA sequencing and target gene prediction. CONCLUSION: mRNAs and lncRNAs are differentially expressed in UUO model rats, which may be related to the pathogenesis of chronic kidney disease. The lncNONRATT011668.2/miR-361- 3p/Nr4a1 ceRNA network may be involved in the pathogenesis of chronic kidney disease.


Assuntos
MicroRNAs , RNA Longo não Codificante , Insuficiência Renal Crônica , Ratos , Animais , RNA-Seq , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Insuficiência Renal Crônica/genética
2.
Pharm Biol ; 60(1): 2308-2318, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36428248

RESUMO

CONTEXT: Yiqi Huoxue Tongluo recipe (YHTR) is a traditional Chinese medicine for the treatment of chronic kidney disease, but its exact mechanism is not clear. OBJECTIVES: To monitor the potential improvement of renal mitochondrial function in unilateral ureteral obstruction (UUO) rats by regulating NR4A1 using the YHTR. MATERIALS AND METHODS: Wistar rats were randomly divided into four groups: sham, UUO (left ureteral ligation for 14 days), eplerenone (EPL) (UUO + EPL), and YHTR (UUO + YHTR). UUO rats were established and intragastrically administered EPL (100 mg/day/kg) or YHTR (11.7 g/day/kg) for 14 days. The expression of related proteins in kidneys was detected by immunohistochemistry, western blot, RT-PCR, and chemical colorimetric assay, respectively. RESULTS: In vivo, YHTR treatment reduced the levels of BUN and Scr (by 17.9% and 23.5%) in UUO rats. Moreover, YHTR improved the renal mitochondrial function via increasing key enzymes of the tricarboxylic acid (TCA) cycle (p < 0.05) and activity of the mitochondrial complex (I-V) (by 30.8%, 29.1%, 19.7%, 35.9%, and 22.4%) in UUO rats. Compared with the UUO group, the expression of NR4A1 and Bcl-2 were significantly increased (p < 0.05), the expression of caspase-3 and caspase-9 were significantly decreased (p < 0.05) in the YHTR group. YHTR could upregulate key enzymes of the TCA cycle via promoting NR4A1 expression in HK2 cells, leading to inhibition of TGF-ß1 induced cell apoptosis. CONCLUSIONS: YHTR significantly improved the development of CKD; this study may provide new ideas for the pathogenesis of CKD and new strategies for the development of new drugs against CKD.


Assuntos
Insuficiência Renal Crônica , Obstrução Ureteral , Ratos , Animais , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/patologia , Ratos Wistar , Mitocôndrias/metabolismo , Eplerenona/uso terapêutico
3.
Int Immunopharmacol ; 108: 108678, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35364431

RESUMO

Aryl hydrocarbon receptor (Ahr) is thought to be a crucial factor that regulates immune responses, which may be involved in the pathogenesis of autoimmune inflammation including rheumatoid arthritis (RA). The results of our group in recent years have shown that Paeoniflorin-6'-O-benzene sulfonate (code: CP-25), a novel ester derivative of paeoniflorin, has a good effect on improving RA animal models. However, whether the anti-arthritis effect of CP-25 is related to Ahr remains unclear. Here, we showed that CP-25 treatment ameliorated adjuvant-induced arthritis (AA), a rat model of RA, by inhibiting Ahr-related activities in fibroblasts like synoviocytes (FLS). AA rats were treated with CP-25 or paroxetine from days 17 to 33 after immunization. We showed that CP-25 alleviated arthritis symptoms and the pathological changes. Treatment with CP-25 decreased the expression of Ahr in the synovium of AA rats. CP-25 inhibited the expression of Ahr and the G protein-coupled receptor kinase 2 (GRK2) as well as the co-expression of GRK2 with Ahr in FLS of AA rats. Furthermore, CP-25 down-regulated the production of Kyn in FLS of AA rats. These results suggested that CP-25 may inhibit the expression and activation of Ahr. Besides, treatment with CP-25 reduced the proliferation and migration of MH7A caused by Ahr activation. In addition, we also demonstrated that CP-25 down-regulated the total and nuclear expression of Ahr and the expression of GRK2 in Kyn-treated MH7A. Moreover, the co-expression and co-localization of Ahr and GRK2in Kyn-treated MH7A were also repressed by CP-25. The data presented here demonstrated that CP-25 suppressed FLS dysfunction in rats with AA, which were associated with reduced Ahr activation and the interaction between Ahr and GRK2.


Assuntos
Artrite Experimental , Artrite Reumatoide , Sinoviócitos , Animais , Artrite Experimental/patologia , Artrite Reumatoide/metabolismo , Proliferação de Células , Células Cultivadas , Fibroblastos , Glucosídeos , Monoterpenos , Ratos , Receptores de Hidrocarboneto Arílico/metabolismo , Membrana Sinovial/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...